Galactic Metamorphoses: Role of Structure

Christopher J. Conselice

Inaugural Zwicky Symposium Confronting Ideas on Galactic Metamorphoses

August 31st - September 4th, 2015, Braunwald, Switzerland

<u>Galactic Metamorphoses – What do we mean?</u>

We know galaxies evolution occurs from observations.

Further questions to address are:

- When/if and how do galaxies transform morphological (i.e., disks/ellipticals/peculiar transformations)
- Size/structure evolution galaxies compact at high-z
- Stellar mass evolution what drives the assembly of galaxies? Does it relate to, or is it driven by the structural/morphological changes in galaxies?

Ellipticals have old stellar populations, spirals have both old and young components while irregulars are dominated by young stars

No/little cold gas or star formation

Cooling gas with star formation

End product of galaxy formation highly regulated and dependent on stellar mass for reasons that are not understood

Conselice 06

Kelvin+ 2014 (GAMA)

The formation of stellar mass – direct measures

Observed integrated stellar mass density vs. redshift

Mass function shows that massive galaxies form quickly

Mortlock+14 (also e.g., Stanfo+15; Muzzin+13; Marchesini+10) Most massive galaxies are in place by z = 1

However galaxies at z = 2.5 are different from nearby massive galaxies

Galaxies at z = 2.5 --- different from nearby massive galaxies

Size evolution – now well established

Buitrago+08

Newman+12

Scales as
$$\sim (1+z)^{-0.82 \text{ to } -1.5}$$

6027	6747	8316	4527
A = 0.04	A = 0.04	A = 0.05	A = 0.06
2387	2322	7121	6038
A = 0.08	A = 0.09	A = 0.09	A=0.11
4587	6188	7406	5989
	0		t de
A=0.12	A = 0.13	A=0.14	A=0.15
1960	6206	8314	3613
14 18		Section 1	
A = 0.18	A = 0.21	A = 0.23	A = 0.29
968			
A=0.37			

Disk/elliptical/peculiar evolution – visual morphologies

z < 1 massive Galaxies in UDF

8071	3174	1416	4714
A=0.00	A = 0.10	A = 0.10	A = 0.12
4838	9397	3597	6675
		10	
A=0.14	A = 0.14	A = 0.15	A = 0.17
5286	4092	2463	7244
A=0.17	A = 0.18	A = 0.19	A=0.23
8409	8614	2445	5136
1.			
A = 0.28	A = 0.29	A = 0.33	A = 0.35
7786	5683	1242	7526
		1	
A = 0.47	A = 0.52	A = 0.60	A = 0.72

z > 1 massive Galaxies in UDF

Milky Way mass progenitors

Papovich +15 (CANDELS)

Massive galaxies become more disky/peucliar at higher redshifts

1

Huertas-Company+15

There is a dependence on stellar mass on morphological evolution

More massive systems become 'Hubble-types' before lower masses $Z_{trans} \sim 1.85$

Rate of change in the formation of Hubble types

Roughly constant formation rate for E/Spirals at 1 < z < 3

How can we form the disk/elliptical bifurcation?

Possible Processes

- Mergers two or more galaxies colliding to form a more massive system - can halt SF, changes morphology
- Harassment high speed galaxy interactions removing mass (Moore et al. 1999) - unlikely to be important at low relative velocities (i.e., field galaxies), changes morphology
- Strangulation removal of hot gas halts star formation
- Ram pressure stripping removing gas from disks due to traveling in an intragroup medium, depends upon group σ^2
- Non-gravitational processes (AGN, SNe) hard to constrain observationally, but likely present

Galaxy Mergers

 Should be common - dynamical friction time-scale goes as (group σ) ³

~250 km/s upper limit for dragging galaxies into center of a group over a Hubble time (groups at high-z common)

 Low redshift merger rate expected to be low, around 2% of galaxies in groups merge per Gyr (observed)

• At higher redshift the mass density increases as $H^2 \sim (1+z)^3$. Results in a higher merger rate of $\sqrt{(\rho)} \sim (1+z)^{1.5}$

Major mergers – measure with structure

Mergers evolve as $(1+z)^{1-3}$ to z = 3

Number of Major Mergers

(for stellar mass selected samples, Conselice 2014, ARAA)

The number of mergers an average massive galaxy will undergo from z = 3to z = 0 can be calculated via:

$$N_m = \int_{t_1}^{t_2} \frac{1}{\Gamma(z)} dt = \int_{z_1}^{z_2} \frac{1}{\Gamma(z)} \frac{t_H}{(1+z)} \frac{dz}{E(z)}$$

For our best fit for $\Gamma(z)$, integrating over the redshift range of our galaxies we obtained:

> N = 1.7 + 0.5(Major mergers / Galaxy)

Roughly doubles the stellar masses of galaxies from z=0 to 3

Are there minor mergers?

More minor mergers add about the same mass as major mergers

Total mass added from all mergers from 1<z<3 is around 50% for a mass selected sample

Bluck+12

Want to trace the same galaxies over time

At constant mass selection only 3% of galaxies in a z=0.4 sample would be in a z = 3 selection - a significant progenitor bias

Evolution of z=0 massive galaxy selection

There is no 1:1 mapping, but a large scatter

Mundy et al. 2015

Using a constant number density selection

Morphological evolution

Shows strong change in the Sersic indices for any selection and a progression of moving from low n galaxies to high n red systems

Not as strong size evolution

Passive fraction increases at lower-z

Papovich+15

The star formation rates as a function of stellar mass

Ownsworth+14

Whitaker+15

$$M_*(t) = M_*(0) + M_{*,M}(t) + \langle \psi \rangle \delta t$$

 $\mathbf{M}_{\mathbf{g}}(t) = \mathbf{M}_{\mathbf{g}}(0) + \mathbf{M}_{\mathbf{g},\mathbf{M}}(t) + \mathbf{M}_{\mathbf{g},\mathbf{A}}(t) - \langle \psi \rangle \delta t$

Stellar mass evolution

Gas mass evolution

Observed condition

$$M_{g,A}(t) = (1.18 \pm 0.21) \times M_g(0) + \langle \psi \rangle \delta t - M_{g,M}(t)$$

Amount of gas accreted

Integrate: Mass added from SF \sim Mass added from major merging However - gas mass fraction for log M > 11 is less than 0.2 The amount of gas added from accretion (or very minor mergers)

$$M_{g,A}(t) = (1.18 \pm 0.21) \times M_g(0) + \langle \psi \rangle \delta t - M_{g,M}(t)$$

$$\frac{M_{g,A}(t)}{M_{*}} = \frac{(1.18 \pm 0.21) \times M_{g}(0)}{M_{*}} + \frac{\langle \psi \rangle \delta t}{M_{*}} - \frac{M_{g,M}(t)}{M_{*}}$$

 $\rm M_{g,A}/M_{*}(0) = 0.83 \pm 0.37$

Over
$$1.5 < z < 3$$
 (2.16 Gyr)

 $(1.6 \pm 0.5) \times 10^{11} \ \mathrm{M}_{\odot}$

Average amount of gas accreted

Results in accretion rate of

$$rac{\mathrm{dM}_{\mathrm{g,A}}(t)}{\mathrm{dt}} = \dot{\mathrm{M}}_{\mathrm{g,A}} = (83 \pm 36) \,\mathrm{M}_{\odot} \,\mathrm{yr}^{-1}$$

Gas accretion rate history for massive systems over cosmic time

Ownsworth+14

Can determine the relative contributions to massive galaxy formation from z = 3

Mergers only $\sim 50\%$ of formation of stellar mass since $z \sim 3^{\circ}$

Bulges and disks at high-z

Bruce+12

How does structure drive galaxy assembly?

Peculiars dominate the fraction of high sSFR systems at z > 2

Relation to surface mass density

Barro+13

Bars in galaxies at z < 2

Simmons+15

Can almost match distribution Seen in real galaxies

Illustris simulation (Snyder+15)

Q3: Quenching and morphology/structure

- Is there a disk-spheroid structural dichotomy in most galaxies?
- Can disks be transformed into spheroids except through major mergers?
- Is the stellar mass growth produced in major mergers important?
- Do bars and spiral structure play an important role in galaxy evolution?
- What are the timescales for morphological/structural changes?
- How closely are star-formation activity and morphology/structure correlated?
- How does structure/morphology change when galaxies cease forming stars, and is this just superficial (in light) or profound (involving mass redistribution)?
- Does the structure, e.g. surface density, physically drive the quenching process(es)?
- Is the link between structure/morphology and sSFR cause or effect and how is this linked to size evolution?