AGN evolution from galaxy evolution viewpoint

Neven Caplar, Simon J. Lilly, Benny Trakhtenbrot

ETH Zurich

Motivation

Great improvements in our knowledge of galaxy population

Motivation

Great improvements in our knowledge of galaxy population

- We wish to describe AGN population with a model which is
 - Phenomenological
 - Analytical
 - Simple
 - Data driven

Outline

- What we can learn just from evolution of quasar luminosity function
 - How do get connect quasar luminosity function and galaxy mass function
 - Redshift evolution of these functions
 - Connecting these evolutions
- Mass ratio (m_{bh}/m_{*}) evolution
 - Hints for mass evolution
 - Observational consequences

Quasar luminosity function is convolution of galaxy mass function and Eddington ratio function

Ansätze

- Radiatively efficient AGNs are in star forming galaxies
- Distribution of Eddington ratio does not depend on the mass of the black hole
- Mass of central black hole proportional to stellar mass
- To make quasar luminosity function convolve
 - AGN mass function & Eddington ratio function

Quasar luminosity function is convolution of galaxy mass function and Eddington ratio function

Ansätze

- Radiatively efficient AGNs are in star forming galaxies
- Distribution of Eddington ratio does not depend on the mass of the black hole $L^* \propto M^* m_{_{bh}}/m_* \lambda^*$
- Mass of central black hole proportional to stellar mass
- To make quasar luminosity function convolve
 - AGN mass function & Eddington ratio function

Quasar luminosity function is convolution of galaxy mass function and Eddington ratio function

Ansätze

- Radiatively efficient AGNs are in star forming galaxies
- Distribution of Eddington ratio does not depend on the mass of the black hole $L^* \propto M^* m_{_{bh}}/m_* \lambda^*$
- Mass of central black hole proportional to stellar mass
- To make quasar luminosity function convolve
 - AGN mass function & Eddington ratio function

 $\phi_{OLF}^* \propto \phi_{SF}^* \xi_{j}^*$

• Fit star-forming component with

$$\phi_{SF}^* \left(\frac{m}{M^*}\right)^{\alpha} \exp\left[\frac{-m}{M^*}\right]$$

 Fit star-forming component with

$$\phi_{SF}^{*}\left(\frac{m}{M^{*}}\right)^{\alpha} \exp\left[\frac{-m}{M^{*}}\right]$$

• Fit star-forming component with

$$\phi_{SF}^* \left(\frac{m}{M^*}\right)^{\alpha} \exp\left[\frac{-m}{M^*}\right]$$

 Minimal change of M* up to until at least z = 3

• Fit star-forming component with

$$\phi_{SF}^* \left(\frac{m}{M^*}\right)^{\alpha} \exp\left[\frac{-m}{M^*}\right]$$

- Minimal change of M* up to until at least z = 3
- Normalization change consistent with simple phenomenological model for galaxies (Peng+ 2010)

Two interesting results from quasar luminosity function

Two interesting results from quasar luminosity function

Two interesting results from quasar luminosity function

Two interesting result from quasar luminosity function

 Normalization of quasar luminosity function changes as normalization of star forming galaxies

$$\phi_{QLF}^* \propto \phi_{SF}^* \, \xi_{\lambda}^*$$

Two interesting result from quasar luminosity function

 Normalization of quasar luminosity function changes as normalization of star forming galaxies

 $\phi_{\textit{QLF}}^{*} \propto \phi_{\textit{SF}}^{*} \, \xi_{\lambda}^{*}$

- For example: in a "kick+decay" toy model
 - chance per unit time of kicking on, $\eta,$
 - a distribution of size of kicks at $\lambda_0 > \lambda_{min}$
 - exponential decay time constant τ

Constant "duty cycle"

Two interesting result from quasar luminosity function

 Normalization of quasar luminosity function changes as normalization of star forming galaxies

 $\phi_{QLF}^* \propto \phi_{SF}^* \, \xi_{\lambda}^*$

- For example: in a "kick+decay" toy model
 - chance per unit time of kicking on, $\eta,$
 - a distribution of size of kicks at $\lambda_0 > \lambda_{min}$
 - exponential decay time constant τ

• Constant "duty cycle"

$$L^* \propto (1+z)^4 \qquad z < 2$$
$$L^* \propto M^* m_{bh} / m_* \lambda^*$$

Results from simulating mass-luminosity plane

Results from simulating mass-luminosity plane

Results from simulating mass-luminosity plane

- Mean redshift of quenching for quenched galaxies we see today is at around redshift of 1 to 1.5.
- Galaxies which have quenched at low redshift will be below relation (pseudobulges?)
- Tilt in the relation

- At a given stellar mass, the size of star-forming galaxies scales roughly as (1+z)⁻¹
- $m_{bh} \propto 3 \cdot 10^8 \sigma_{200}^4$
- At a given galaxy mass $r \propto (1+z)^{-1} \Leftrightarrow \sigma^2 \propto (1+z)$

$$\frac{m_{bh}}{m_{star}} \propto (1+z)^2 \Leftrightarrow \frac{m_{bh}}{\sigma^4} = constant$$

 Constant m_{bh} – sigma, virial relation, and size evolution of galaxies lead to evolution in m_{bh}/m_{*}

- At a given stellar mass, the size of star-forming galaxies scales roughly as (1+z)⁻¹
- $m_{bh} \propto 3 \cdot 10^8 \sigma_{200}^4$
- At a given galaxy mass $r \propto (1+z)^{-1} \Leftrightarrow \sigma^2 \propto (1+z)$

$$\frac{m_{bh}}{m_{star}} \propto (1+z)^2 \Leftrightarrow \frac{m_{bh}}{\sigma^4} = constant$$

 Constant m_{bh} – sigma, virial relation, and size evolution of galaxies lead to evolution in m_{bh}/m_{*}

Bias in measuring m_{bh}/m_{\star}

Bias in measuring m_{bh}/m_{\star}

Bias in measuring m_{bh}/m_{\star}

• Measuring mass ratio in star-forming systems and comparing to local relation is potentially very dangerous

What/where is downsizing

• "Downsizing" is reproduced even though Eddington ratio distribution is strictly mass-independent

Summary

- Simple global model combining galaxy mass function and quasar luminosity function leads to following conclusions
 - **Constant "duty cycle"** at characteristic Eddington ratio
 - Evolution of ϕ_{QLF}^* normalization of quasar luminosity function is consistent with ϕ_{SF}^* normalization of star-forming galaxies
 - Evolution in the m_{bh}/m_{*} relation in star-forming galaxies
 - Evolution in L* can be due to evolution of $~\lambda^* and/or~m_{\mbox{\tiny bh}}/m_*$
 - Non-evolving $m_{\mbox{\tiny bh}}/m_{\mbox{\tiny \star}}$ disfavored by mass-luminosity plane
 - Local relation and measurements at higher redshift are satisfied by evolving relation
 - Size evolution in galaxies implies evolution in either $m_{\mbox{\tiny bh}}/m_{\mbox{\tiny \star}}$ or mbh sigma relation
 - Extreme caution when comparing black holes in star-forming and quenched galaxies

Additional slides

